
Copyright © 2012 IJECCE, All right reserved
281

International Journal of Electronics Communication and Computer Engineering
Volume 3, Issue 1, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Computational Model for Mining Frequent Sets in Large
Databases

Anju Singh
BUIT, BU, Bhopal

asingh0123@rediffmail.com

R. C. Jain
SATI, Vidisha

dr.jain.rcd@gmail.com

Abstract - In this paper we have addressed the problem
that we overcome in data mining applications i.e. mining
frequent patterns in large databases efficiently in less time
with less memory requirement. We are proposing a
computational model for finding frequent patterns in large
datasets with less number of scans .We have also proposed
methodology which would help in storing large database
compactly and thus help in improving the storage space
requirement. Our model would help in generating less
patterns and thus improving the mining time required in
large databases. Our computational model is an
amalgamation of three approaches i.e. bottom up counting
inference and top down intersection method for generating
the frequent sets and tree based approach for storing the
databases compactly.

Keywords - Computational Model, Mining, Frequent Sets,
Large Databases, Survey.

I. INTRODUCTION

Mining frequent patterns from large transactional
databases plays an essential role in many data mining tasks
and have broad applications. Knowledge discovery in
databases (KDD) has received increasing attention and has
been recognized as a promising new field of database
research. It is defined by Fayyad et al. [1] as “the non-
trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data”.
The key step in the knowledge discovery process is the
data mining step, which is “consisting of applying data
analysis and discovery algorithms that, under acceptable
computational efficiency limitations, produce a particular
enumeration of patterns over the data” [1].
Discovering association rules that identify relationships
among sets of items in a transactional database is an
important problem in Data Mining. Finding frequent item
sets has been an active research area since it is the crucial
step in association rule discovery. However, efficiently
mining frequent item sets from dense datasets is still a
challenging problem.

A key component of many data mining problems is
formulated as follows. Given a large transactional
database of sets of items (representing market basket data,
alarm signals, etc.), discover all frequent item sets (sets of
items), where a frequent item set is one that occurs in at
least a userdefined percentage (minimum support) of the
transactional database. Depending on the semantics
attached to the input database, the frequent item sets, and
the term “occurs”.

II. LITERATURE SURVEY

Three approaches have been studied for mining frequent
patterns: The first is traversing iteratively the set of all
patterns in a level wise manner [2]. During each iteration
corresponding to a level, a set of candidate patterns is
created by joining the frequent patterns discovered during
the previous iteration, the supports of all candidate
patterns are counted and infrequent ones are discarded.
The most prominent algorithm based on this approach is
the Apriori algorithm [3] that uses identical properties as
the OCD algorithm [4] proposed concurrently.

The second approach is based on the extraction of
maximal frequent patterns, from which all supersets are
infrequent and all subsets are frequent. This approach
combines a level wise bottom-up traversal with a top-
down traversal in order to quickly find the maximal
frequent patterns. Then, all frequent patterns are derived
from these ones and one last database scan is carried on to
count their support. The most prominent algorithm using
this approach is Max-Miner [5]. Experimental results have
shown that this approach is particularly efficient for
extracting maximal frequent patterns, but when applied for
extracting all frequent patterns performances drastically
decrease because of the cost of the last scan which
requires roughly an inclusion test between each frequent
pattern and each object of the database.

The third approach, represented by the Close algorithm
[6], is based on the theoretical framework introduced in
[7] that uses the closure of the Galois connection [8]. In
this approach, the frequent closed patterns (and their
support) are extracted from the database in a level wise
manner. A closed pattern is the greatest pattern common to
a set of objects of the database; each non-closed pattern
has the same properties (same set of objects containing it,
and thus an identical support) as its closure, i.e. the
smallest closed pattern containing it. Then, all frequent
patterns as well as their support are derived from the
frequent closed patterns and their support without
accessing the database. Experiments have shown that this
approach is much more efficient than the two previous
ones on such data.

The fourth approach represented in [9],is based on
pattern counting inference. This method relies on the
concept of key patterns, where a key pattern is a minimal
pattern of equivalence class gathering all pattern common
to the same objects of the database relation. Hence, all
patterns in an equivalence have the same support and the
supports of the non-key pattern of an equivalence class can
be determined using the supports of the key patterns of
this class. With pattern counting inference, only the

mailto:asingh0123@rediffmail.com
mailto:rcd@gmail.com


Copyright © 2012 IJECCE, All right reserved
282

International Journal of Electronics Communication and Computer Engineering
Volume 3, Issue 1, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

supports of the frequent key patterns (and some infrequent
ones) are determined from the database, while supports of
the frequent non-key patterns are derived from those of the
frequent key patterns. Problem Statement and motivation.

Current methods for mining frequent sets still suffer
from the following problems:
• Large candidate set
• Lots of database scan

Our goal is to discover the methods to improve and
simplify the same.

III. PROPOSED METHODOLOGY

We propose a new and improved approach by
combining two approaches i.e. bottom up counting
inference and top down intersection method for generating
the frequent sets efficiently in less time.
Proposed Algorithm:

Step 1: In the first step we have converted our large
database in compact form through a novel data structure,
compact transactional tree to generate a compact database.
The advantage of this step is that by doing this the amount
of disk space required as well as the total running time can
be decreased dramatically on large real world databases. In
this the tree based database is divided in two parts: head
and body. The head part consists of the support count of
each transaction and are ordered in frequency decreasing
manner. For the step 1 algorithm 3 is used.
A number of transactions in a large transactional database
may contain the same set of items .In this method we have
compressed the database by making each unique
transaction of the original database to contain only one
entry in the corresponding compact database, with a count
number recording the number of its occurrence in the
original data base. This would allow us to avoid repeatedly
scanning the same transaction in the original database.

Step 2 (a) : In the second step, we find frequent patterns
through the pattern counting inference method .The
pattern counting inference method relies on the concept of
key patterns. A key pattern is a minimal pattern of an
equivalence class gathering all patterns that have the same
objects. The pattern counting inference allows to
determine the support of some frequent and infrequent
patterns (key patterns) in the database only. The support of
all other frequent patterns are derived from the frequent
key patterns. This allows to reduce at each database pass,
the no. of patterns considered and even more importance
to reduce the number of passes in total. This optimization
is valid since key patterns have property that all subsets of
a key pattern are key patterns and all supersets of a non-
key pattern are non-key patterns. The counting inference is
performed in a level wise manner if a candidate pattern of
size k which support has to be determined is a non key
pattern, then its support is equal to the minimal support
among the patterns of size k-1 that are its subsets. The
important difference in comparison to previous
methodology is to determine as much support counts as
possible without accessing the database by information
gathered in previous passes. For the step 2 (a) algorithm 1
and 2 is used.

Step 2 (b) : Then a top down intersection method is
applied in which we intersect the candidate item sets
which are infrequent to get the candidate patterns which
may be frequent. In order to construct k-itemsets,
infrequent (k-1)-itemsets are used. Their union is formed
and for their support count and intersection operation is
employed between the TIDs of the itemsets. Itemset
{CDIJ} and itemset {BCDI} are infrequent. The union of
these two itemsets and intersection principles is used to
find if the resultant itemset is frequent as follows:

T(CDIJ) ∩ T(BCDI) =T(CDI) (which is frequent)
If the result is greater than minimum support, it will be

joined to frequent itemsets. If the result is lower than
minimum support, it will be pruned off.
Algorithm 1 Pascal (bottom up counting inference)
Notations used in PASCAL

K is the counter which indicates the current iteration. In
the Kth iteration, all frequent K patterns and all key
patterns among them are determined.

PK contains after the Kth iteration all frequent kpatterns
P together with their support P. sup, and a boolean
variable . key indicating if P is a (candidate) key pattern.

Ck stores the candidate k-patterns together with their
support (if known), the Boolean variable P.key, and a
counter P. pred_supp which stores the minimum of the
supports of all (k -1)-sub-patterns of P.
1) φ . sup <—1; φ .key <—true;
2) P0 <- {φ };
3) P1 <-{frequent 1-patterns}; for all p ∈P1 do begin
4) p.pred_supp <— 1; p.key <— (p.supp ≠ 1);
6) end;
7) for (k = 2; Pk-1 ≠ φ ; k + +) do begin
8) Ck <- PASCAL-GEN(PK-1);
9) if ∃c ∈ Ck where c.key then
10) forall o ∈ D do begin
11) Co <— subset(Ck,o);
12) forall c ∈ Co where c.key do
13) c. sup ++;
14) end;
15) forall c ∈ Ck do
16) if c. supp ≥ minsup then begin
17) if c.key and c. supp = c.pred_supp then
18) c.key <— false;
19) Pk <- Pk U {c};
20) end;
21) end;
22) return Uk Pk .
Algorithm 2 PASCAL-GEN
Input: Pk-1, the set of frequent (k-1)-patterns p with their
support p.supp and the p.key flag.
Output: Ck , the set of candidate k-patterns c each with the
flag c.key, the value c.pred_supp, and the support c.supp if
c is not a key pattern.
1) insert into Ck select p.item1, p.item2, ..., p.itemk-1,
q.item k-1 from Pk-1 p, Pk-1 q where p.item1 = q.item1,
..., p.item k-2 =q.item k-2, p.item k-1 ‹q.item k-1;
2) forall c∈Ck do begin
3) c.key <— true; c.pred_sup <—+∞ ;
4) forall (k-1)-subsets s of c do begin
5) if s ∉ P k-1then



Copyright © 2012 IJECCE, All right reserved
283

International Journal of Electronics Communication and Computer Engineering
Volume 3, Issue 1, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

6) delete c from Ck;
7) else begin
8) c.pred_supp <— min(c.pred_supp, s. supp);
9) if not s.key then c.key <— false;
10) end;
11) end;
12) if not c.key then c. supp <— c.pred_supp;
13) end;
14) return Ck.
Algorithm 3 for Compact Database Generator
Input: Original transaction database TDB.
Output: Compact transaction database CDB.
1:root[CTtree] ← ROOT
2: list[item][count] ← null
3: for each transaction Tn in TDB do
4: To ← sort items of Tn in lexicographic order
5: insert(To, CTtree)
6: end for
7: if CTtree is not empty then
8: list ← sort list[item][count] in count descending order
9: for each item i in list[item] do
10: CDB ← write i
11: CDB ← write count[list[i]]
12: end for
13: startNode ← child[root[CTtree]]
14: write(startNode, CDB)
15: else
16: output ”The original transaction database is empty!”
17: end if
procedure insert(T, CTtree)
1: thisNode ← root[CTtree]
2: for each item i in transaction T do
3: if i is not in list[item] then
4: list[item] ← add i
5: end if
6: list[count[i]] ← list[count[i]] + 1
7: nextNode ← child[thisNode]
8: while nextNode = null and item[nextNode] = i do
9: nextNode ← sibling[nextNode]
10: end while
11: if nextNode = null then
12: item[newNode] ← i
13: if i is the last item in T then
14: count[newNode] ← 1
15: else
16: count[newNode] ← 0
17: end if
18: parent[newNode] ← thisNode
19: sibling[newNode] ← child[thisNode]
20: child[newNode] ← null
21: child[thisNode] ← newNode
22: thisNode ← newNode
23: else
24: if item i is the last item in T then
25: count[thisNode]++
26: else
27: thisNode ← nextNode
28: end if
29: end if
30: end for

procedure write(node, CDB)
1: if count[node] = 0 then
2: count[newTrans] ← count[node]
3: nextNode ← node
4: while nextNode = root[CTtree] do
5: newTrans ← insert item[nextNode]
6: nextNode ← parent[nextNode]
7: end while
8: if newTrans is not empty then
9: newTrans ← sort newTrans in list order
10: CDB ← write newTrans
11: end if
12: end if
13: if child[node] = null then
14: write(child[node], CDB)
15: end if
16: if sibling[node] = null then
17: write(sibling[node], CDB)
18: end if
An example of the Proposed Algorithm:

Table I : Transaction database
TID List of items
001 A,B,C,D,E,F,G,I
002 B,C,D,E,I,K,L
003 A,B,I,K,L
004 A,B,I,H
005 C,D,I,J
006 B,C,D,I
007 C,D,E,F,I



Copyright © 2012 IJECCE, All right reserved
284

International Journal of Electronics Communication and Computer Engineering
Volume 3, Issue 1, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Fig.1. Example of the Proposed Algorithm with bottom up
approach

Fig.2. Example of the Proposed Algorithm with
intersection

Fig.3. Apriori Vs Proposed algorithm

IV. CONCLUSION

In this paper, we have integrated the techniques for
mining frequent item set to obtain a more efficient
algorithm for finding frequent patterns. Efficiency will be
in the form of less memory requirement and less
computing complexity. We have compressed the database

which would allow us to avoid repeatedly scanning the
same transaction in the original database. Then we have
applied two approaches i.e. counting inference and
intersection which would allow less number of databases
scans (so that the computation is faster)and thus the
mining time required could be decreased. Experimental
results show the validity and efficiency of our proposed
method. If we apply the proposed algorithm on the
example only 3 database passes and only 21 patterns are
generated that are to be analyzed, whereas on applying
apriori algorithm 4 database passes and 37 patterns are
generated that are to be analyzed.

REFERENCES

[1] Stanchev P., Using Image Mining For Image Retrieval, IASTED
International Conference” Computer Science and Technology”,
Mayb19-21, 2003, cacun, Mexico, 214-218.

[2] Mannila H. and Toivonen H. Levelwise search and borders of
theories in knowledge discovery. Technical Report TR C-1997-
8, Dept. of Computer Science, U. of Helsinki, Jan .1997.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. 20th VLDB, Sept.
1994.

[4] Mannila H.and Toivonen H., and Verkamo A.Improved methods
for finding association rules. In Proc. AAAI Workshop on
knowledge Discovery, pages 181-192, july 1994.

[5] R. J. Bayardo. Efficiently mining long patterns from databases.
Proc. SIGMOD conf., pp 85- 93, June 1998.

[6] Pasquier N., Taouil R., and Lakhal L.Efficient mining of
Association rules using closed itemset lattices.Information
System, vol.24(1):25-46, March 1999.

[7] Pasquier N., Bastide Y., Taouil R., and Lakhal L. Pruning
Closed itemset lattices for association rules. Proc. BDA conf.,
pages 177-196, October 1998.

[8] Ganter B. and wille R. Formal Concept Analysis:Mathematical
foundations. Springer, 1999.

[9] Bastide Y., Taouil R., Pasquier N., Stumme G., and Lakhal L.
Mining frequent patterns with counting inference. ACM
SIGKDD Explorations Newsletter, 2(2):66-75, December 2000.

AUTHOR’S PROFILE

Anju Singh
BUIT, BU, Bhopal
asingh0123@rediffmail.com

R. C. Jain
SATI, Vidisha
dr.jain.rcd@gmail.com

mailto:asingh0123@rediffmail.com

